Teaching Support for the Visualization of
Selected Recursive Algorithms

Baranik, Robert and Steingartner, William

Abstract: We present in this paper a software
project that serves as a teaching tool for the
visualization of algorithms taught and explained
in the course “Data Structures and Algorithms”.
This software tool is considered to be a teaching
tool for lecturers and students. The visualization
is performed by storing the states of particular
algorithms in a list of states during the execution
of the algorithm and later displaying those states
on the canvas and showing in the text area as a
pseudo-code. User can enter own input values, both
manually and from an XML file, and create output
from a canvas or pseudo code. The application
provides dual language interface — Slovak and
English. Since we consider a universal use of the
application, it can be run on the desktop even on a
web browser using the WebSwing web server. The
application is implemented in Java using JavaFX
library for graphics applications.

Index Terms: graphical user interface, recursive
algorithms, teaching tool, university didactics, vi-
sualization

1. INTRODUCTION

OWADAYS, there are currently several dif-
ferent applications for visualizing algorithms,
mainly sorting algorithms and algorithms for vi-
sualizing trees and graphs (for example [10]).
However, only a few of applications are suitable
for teaching the undergraduate course Data Struc-
tures and Algorithms for the study program Infor-
matics at the Faculty of Electrical Engineering and
Informatics: either due to the absence of selected
recursive algorithms or the lack of localization into
the Slovak language, which could help to better
understand the principles of presented algorithms.
For these reasons, there was a motivation to
create an application that could serve both teach-
ers and students as a teaching tool for this. We
expect that using our software module could help
students to understand the principles of recursive
algorithm better, thanks to their visualization.
After selecting the most interesting algorithms
that are presented in the course on Data Struc-
tures and Algorithms, we focused on the design

Manuscript received in June 2020. This work was supported by
the Project KEGA 011TUKE-4/2020: “A development of the new
semantic technologies in educating of young IT experts”.

Baranik, Robert. The author is a student of Informatics at the Fac-
ulty of Electrical Engineering and Informatics, Technical University
of Kosice, Slovakia (e-mail: robert.baranik @student.tuke.sk)

Steingartner, William (corresponding author). The author works at
the Faculty of Electrical Engineering and Informatics, Technical Uni-
versity of Kosice, Slovakia (e-mail: william.steingartner @tuke.sk)

and development of the teaching tool that is able
to visualize and explore the following algorithms:

« Merge sort,

o« Max-min,

« Knight’s Tour,

« Eight queens puzzle,

« Sierpinski triangle,

« Sierpinski curve.

The application was implemented as a Java
application using JavaFX library. Our idea was
that higher-level visualizing tool can provide vi-
sualization as a whole (as a running example)
with pausing the algorithm run in any step, and
must be able to step forward (in particular steps),
and to step back. The application should have
several input options, such as manual user input,
generated random input by clicking a button, and
retrieving input from a file in some universal format
(for instance in XML). The application should also
provide options for visualization output: the output
of pseudo-code to a simple (pure) text format or
a PDF document, or an output of a visualization
canvas to an image or, also, to a PDF document.
Moreover, the application should be localized into
Slovak language providing, also, an English user
interface. Full documentation can be found in [3].

We consider that our application can success-
fully serve as a teaching tool for the lecturers
actively teaching the course, for the new teachers
of the course, for the students in the preparation
for lectures and exams, and for the experts who
need to simulate these algorithms when writing
their software modules or applications.

The structure of the paper is as follows: In
section 2, we present the main facts about the
algorithms that can be visualized by our software.
Section 3 refers to the functionality of the program
— it describes its main functions and the user inter-
face. In section 4, we explain the procedure how
the application has been designed and developed.
We conclude the paper with section 5.

2. ALGORITHMS OVERVIEW

Most of the selected algorithms are solved by
recursion — defining the process using itself [12].
The Max-min and Merge sort algorithms are well-
known Divide and Conquer algorithms: they work
by recursively breaking down a problem into two
or more sub-problems of the same or related type
until these become simple enough to be solved



directly. The solutions of the sub-problems are
then combined to give a solution to the original
problem [12], [15].

Merge sort is a recursive sorting algorithm that
continually splits an array of size N recursively
into halves. If the array is empty or has one item,
it is sorted by definition (the base case). If the
array has more than one item, the array is split
again and the merge sort is recursively invoked
on both halves. Once the two halves are sorted,
the fundamental operation, called a merge, is
performed [9]. Merging is the process of taking two
smaller sorted arrays and combining them into a
single, sorted, new array. Continually, in each level
of the Merge sort tree, there is the same original
number of elements N, only in a different number
of fields of different sizes. Merge sort is useful for
sorting large amounts of data progressively [6].

Max-min is a recursive algorithm that returns
the maximum and minimum value of a given array.
In this approach, an input array is halved until
pairs or individual values are formed. The max-
imum and minimum of the array are determined
from them (with an individual value if it is the same
value for the minimum and maximum) and the
algorithm recursively returns these two values to
the “parent” array. The return values of the array
pairs are then compared: the maximum of the first
array with the maximum of the second array and
the minimum of the first array with the minimum of
the second array [1]. The maximum and minimum
of this “parent” array are then returned recursively,
and this is repeated until recursion is complete,
when the maximum and minimum of the entire
array are obtained.

Knight's Tour is an algorithm for finding a
(closed) path of movement of a chess knight on
a chessboard, mostly 8 x 8 in size. The knight
can move to a maximum of eight different squares
relative to the previous position. This problem is
solved if the knight steps on each square of the
board according to established rules. An essen-
tial characteristic of the solution using recursion
is the fact that the individual steps, based on
which we proceed to the final solution, are first
examined by trial and error and then recorded
[14]. In addition to recursive implementation, the
algorithm can be solved using Warndorf heuristic
[7]: the algorithm searches for another possible
field based on the heuristics of the surrounding
(maximum eight) positions, which indicates how
many possible next steps are from the given field.
The algorithm always chooses the lowest possible
heuristic to avoid failure.

Eight queens puzzle is the problem of placing
chess queens on the board so that they do not en-
danger each other according to the rules of chess.
Chess composer Max Bezzel published the eight
queens puzzle in 1848. Franz Nauck published the

first solutions in 1850. Nauck also extended the
puzzle to the n queens problem, with n queens on
a chessboard of n x n squares. Since then, many
mathematicians, including Carl Friedrich Gauss,
have worked on both the eight queens puzzle and
its generalized n-queens version [14]. The queen
can move horizontally, vertically and diagonally to
an infinite distance limited only by other pieces
and edges of the board. Thus, there must not be
two or more queens in the same row, column or
diagonal [5]. This algorithm goes through each
column, in which it tries to insert exactly one
queen. After placing one queen on the board, it
moves to the next column and puts another queen
starting from the first row. If the queen cannot
be placed on any row of the given column, the
queen is removed and the algorithm returns to
the previous column and moves the queen in this
column to the next row. The algorithm ends by
placing the last queen in the last column.

Sierpinski triangle is one of the first examples
of a fractal — an irregular, fragmented geometric
shape that can be divided into parts, each of
which is at least approximately similar, a scaled-
down copy of the entire geometric shape [8], [13].
It consists of several triangles — 3"~!, where n
is the level of triangle recursion. The first level
of the triangle consists of a simple one-sided
triangle with one vertex pointing upwards. Each
subsequent level consists of three triangles of the
previous level: one at the top, one at the bottom
left, and the last at the bottom right, creating a
blank inside, also in the shape of a triangle, but
with one vertex down. The algorithm is recursive
— when it reaches the lowest level, it draws one
simple triangle. The process of creating such a
triangle is also very nicely presented in [11].

Sierpinski curve is a shape that fills a square-
shaped space. Similar to the Hilbert and Peano
curve, the Sierpinski curve maps unit interval onto
square [2]. The curve consists of open curves
turned in four different directions (bottom, right,
top and left) and connected by other lines. The
zero-order curve consists of a square standing on
one vertex, formed by connecting lines, without
open curves. The next level is formed by open
curves connected by other lines. In the first level,
for example, at the bottom, there is only one open
curve connected to the other parts by lines. In the
second, there are already four simple open curves
connected by lines, and in the next levels, this part
is formed by an increasing number of these open
curves, which will gradually fill the entire space
of the square. Open curves and their connections
are constructed by the following rules:

Curve : AN B/ C~\.D / (1)



ANB=—D /A
"B/ CUANB
:C\D<=B,/C
:D AAQCR. D

QW

3. FUNCTIONALITY

The application is implemented with several
functionalities to simplify and improve control and
understanding of algorithms. The graphical user
interface (GUI, Figure 1) of the application con-
sists of a menu in which a user can switch be-
tween the selected algorithms and also switch
between two languages of the environment —
Slovak and English. When the language option
is changed, the text on all elements — title, de-
scriptions, buttons, error messages, and, also, the
pseudo-code is changed, except for the usual
keywords, such as while, if, true, etc. After
choosing one of the algorithms in the menu, the
title changes to the name of the selected algorithm
and a short description of the algorithm is written
on the canvas, which forms the largest part of
the interface and on which the states of the algo-
rithms will be visualized later. The pseudo-code is
displayed in the text area on the right-hand side
of the canvas. The source files for the pseudo-
code are uploaded from a folder separate from the
application and change based on the visualization
status. Below it, there are the buttons for entering
input and obtaining output from the visualization.

Pressing one of these buttons opens and dis-
plays a screen overlay with an input dialog where
a user can select manual input using a text field
followed by a validation message, random input
by pressing a button, or input from a preprepared
XML file, or an output dialog, where, after select-
ing an output source (pseudo-code or canvas),
this source can be saved to a simple file (standard
text format — TXT extension, or graphical format
PNG) or to a PDF document in the selected direc-
tory. The key part is the control of the visualization,
which consists of several elements: a button to run
(play) / pause the process of visualization, buttons
for a step back and step forward, a button to return
to the beginning, a slider to change the playback
speed and a visualization progress bar.

The WebSwing web server, which is compat-
ible with the version of the JavaFX technology
used and can display the application window in
the browser, was used to run on the browser.
The installation requires a physical server on
which WebSwing can be run. The JAR file and
other necessary files must be inserted into the
WebSwing directory. After starting WebSwing and
configuring a new profile, the installation is com-
plete and the application can be launched in the
browser.

10

4. METHODOLOGICAL DESIGN

The developed project is structured into several
packages. The main package contains Controller
and Main classes, which are typical of JavaFX
technology when using the FXML file that is
used to represent the application interface. The
Controller class is the most important class of
a project — it manages most user actions, such
as changing speed, switching algorithms or lan-
guage, so it is an intermediary between the user
and parts of the system. It also contains refer-
ences to interface elements, such as the canvas,
text boxes, and buttons, which are annotated with
the @FXML annotation [4]. Visualization controls
— play/pause, step back / forward, reset, and
change speed — are also implemented in this
class.

The visualization is performed by storing the
states through which the algorithm has passed
in the list of states and is also separated from
the execution of the selected algorithm. Thus, the
playback of the visualization is performed by going
through the individual states on a separate thread
of the processor. If the visualization is launched,
the value of the state index currently plotted is
obtained and increased by one. Then, a method
for drawing the canvas and writing the pseudo-
code is performed on the object of the given
algorithm. It returns a Boolean value indicating
whether the state exists on this index and can be
visualized. If it returns the value true, it waits for
the time based on the launch speed and repeats
the process. If it returns the value false, it stops
the visualization.

The main package also includes the StageCon-
troller class and the Language enumeration class,
both of which change the language: Language
has a static variable with the language currently
in use and methods to change it, StageController,
in addition to changing the root of the FXML
document of the scene to the root of the chosen
language, also initializing the scene using an fxml
reader and saving the mentioned roots and their
controllers.

The algo package, which is nested in the main
package, contains the packages of each algo-
rithm, the parent Algorithm class, from which
the individual classes inherit and which contains
methods common to multiple algorithms, such
as chessboard rendering, the parent State class,
which contains data for individual states and their
visualization, the Board class, which stores chess-
board data, and the AlgorithmType enumeration
class. Algorithm packages consist mainly of two
classes: the algorithm class (e.g. class Queen for
the Eight Queens problem) and the state class
of that algorithm (QueenState). Algorithm classes
have several methods that are common to other



E Visualisation of chosen algorithms over data structures

SORTING

N Queens

Speed: '

BOARD PROBLEMS

GRAPHICAL LANGUAGE

boolean ngRecursion{column) {
if(a11 queens placed) return true

foresch row {
if(left and right disgonal and this row is
e queen and update diagonals and row

empty) {

cursion{nextColumn}}) return true;
JUEEN and update diagonsls and row; <<c

return false;

INPUT OUTPUT

v D> O =mm——

Fig. 1. Application running on desktop

algorithms and inherit them from the parent Algo-
rithm class. These include methods:

« execute — it executes algorithm code in the
background and saves a list of states, which
is sent to the Controller, to start visualization
in its method for playback;

o drawAllStates — based on the method
parameter (index) determines which state
to visualize, executes also the drawState
and writePseudoCode methods, by which it
passes the given state directly;

o drawState — draws the given state on the
canvas based on variables in the state object;

« writePseudoCode — writes the pseudo-code
stored in the file to a text area, adds changing
values from the state variables.

The io package contains classes that control
input and output data. The most important of
these are the /ODialog and InputOutput classes.
The IODialog contains methods for creating the
graphical user interface of input and output dia-
logues, so it could be said that it is the equiva-
lent of the Controller class for input and output
dialogues. Based on the dialog type (input or
output) and the selected input/output type, this
class inserts a dialog, buttons, and text fields in
a predetermined location, which, when pressed
or changed, send data to an InputOutput class
object. For feedback, when entering input into a
text field, the InputField class has been created,
which has information about the restrictions of
a given input value, such as a minimum and
maximum value, and methods for determining the

11

validity of input values. Feedback from the objects
of the InputField and InputOutput classes is finally
displayed in the dialog via the methods of the
I0Dialog class. InputOutput contains methods for
input processing and output generation. Based
on the type of the algorithm in the generatelnput
method, it generates a correct input or reads
values from an XML file that the user uploads to
the application. It also creates a canvas image
or copies the text in the pseudo-code text area
when creating the output and applies it to the
selected PNG or TXT file, or pastes the data
into a PDF using DocumentBuilder and the iText
library. It also checks the format of the selected file
using the commons-io library. Feedback on each
of the methods is sent to the /ODialog object for
display. When the input is correct, it is sent to the
Controller class for processing, which sends it to
the class of the selected algorithm and runs its
execute method. Then it is then possible to start
the visualization.

5. CONCLUSION

The application meets all specified require-
ments, it can visualize all six algorithms based on
various types of inputs, step and change speed
if necessary, and finally provides an output from
the visualization — from canvas or pseudo code.
Application is ready to provide a user interface in
the Slovak and English language. Our application
is suitable for use in teaching, which will certainly
be more attractive in this work and students will
be able to use it to handle the problem of these



algorithms and recursions much easier and faster.
However, the application will need to be further
extended, since in this project we focused only
on selected algorithms that are part of an ap-
propriate topic in the course Data Structures and
Algorithms. In future, we would like to concentrate
on other algorithms which are also presented
in the course, especially sorting algorithms, the
implementation of which would have another great
impact in the process of educating the students.
User interface can also be modified — it is possible
to add certain elements, such as sliders when
entering input values, which would simplify and
make working with this application easier. One
possible improvement is making several versions
of visualization with some algorithms, using other
types of graphs. Based on the identified possible
extensions, we are ready to continue in this work
in future and to bring more attractive ways of
teaching algorithms and principles of particular
structures.

REFERENCES

[1] ALSUWAIYEL, M. H. Algorithms design techniques and
analysis. World Scientific, 1999.

[2] BADER, M. Space-Filling Curves — An Introduction with

Applications in Scientific Computing. No. 9 in Texts

in Computational Science and Engineering. Springer-

Verlag, 2013.

BARANIK, R. Visualisation of selected algorihms over

data structures. Tech. rep., Technical University of KoSice,

Kosice, Slovakia, 2020.

[4] CHIN, S., Vos, J., AND WEAVER, J. The Definitive Guide
to Modern Java Clients with JavaFX: Cross-Platform Mo-
bile and Cloud Development. Apress, 2019.

[3

12

5

COPPIN, B. Artificial Intelligence llluminated. Jones and

Bartlett Publishers, Inc., USA, 2004.

[6] JEON, M., AND Kim, D. Parallel merge sort with load
balancing. International Journal of Parallel Programming
31 (02 2003), 21-33.

[7] LEVITIN, A., AND LEVITIN, M. Algorithmic Puzzles. Ox-
ford University Press, USA, 2011.

[8] MANDELBROT, B. B. The Fractal Geometry of Nature.
Henry Holt and Company, 1983.

[9] MARES, M., AND VALLA, T. Algorithm Labyrinth Guide.

CZ.NIC, 2017. (in Czech).

MOCINECOVA, K., AND STEINGARTNER, W. Software

support for visualizing of the graph algorithms in a novel

approach in educating of young it experts. IPSI Transac-

tions on Internet Research 16, 2 (July 2020), 14-23.

PELANEK, R. Programmer’s exercise book. Computer

Press, 2012. (in Czech).

RYCHLIK, J. Programming techniques. KOPP, 1992. (in

Czech).

WELSTEAD, S. Fractal and Wavelet Image Compression

Techniques. SPIE Press, 1999.

WIRTH, N. Algorithms and Data Structures. Alfa, 1989.

(in Slovak).

WROBLEWSKI, P. Algorithms, Data Structures and Pro-

gramming Techniques. Helion, Poland, 2019. (in Polish).

[10]

(1]
(2]
[13]
(14]

(18]

Rébert Baranik is a student of Informatics at the Faculty of
Electrical Engineering and Informatics, Technical University of
Kosice, Slovakia. The title of his bachelor thesis is “Visualiza-
tion of Selected Algorithms over Data Structures”.

William Steingartner works as Assistant Professor of Infor-
matics at the Department of Computers and Informatics of

the Faculty of Electrical Engineering and Informatics, Technical
University of KoSice, Slovakia. He defended his PhD thesis

“The Réle of Toposes in Informatics” in 2008. His main fields
of research are the semantics of programming languages, cat-
egory theory, compilers, data structures and recursion theory.
He also works with type theory and software engineering.



